Look at him -- quite the ladies man!

iStockphoto/Thinkstock

Evolution and Dynamite Genes

Competitive evolution can be a two-way street. Sometimes a native species bucks up and wins, but the pressure from a beneficially adapted invasive species is often too intense. Some success stories for natives, however, include the soapberry bug which evolved different beak lengths in 50 years flat to take advantage of a new invasive host species' anatomy [source: Stanford University]. Another case happened in Hawaii, where the banana plant was introduced around a thousand years ago, a microsecond in evolutionary terms. Since then, five species of moths that we know of evolved to take advantage of the tasty new treat. Today, however, those same moths are slowly losing their battle against yet another invasive introduction -- wasps and flies that were imported to help with agricultural pest control.

In other cases, the clear winners are the invasives. Take mallard ducks, for instance, and we run into a case of hybridization. Mallards have been introduced into numerous habitats worldwide, and once there, they aren't overly picky about whom they mate with. So mallard hybrids crossed with the New Zealand gray duck, the Hawaiian duck and the Florida mottled duck have all started pushing around the native purebreds still in existence.

Same thing with Sitka deer from Japan. They've started mixing genetically with red deer in the U.K., a process called introgression, and they're impinging on the native species' genetic integrity. Finally, let's take a closer look at the California tiger salamander.

The California tiger salamander evolved separately from the barred tiger salamander for some 3-to-10 million years, yet when barred tiger salamanders were transported to California for bait breeding (where, presumably, a few slippery specimens successfully attempted a bid for freedom), they started breeding with the already threatened California natives.

The result was hybridized salamanders that can not only breed with one another, but with both of the parental species of salamander. The real kicker, however, is that when the hybrids were studied for telltale signs of genetic alteration from the original natives, it was found that while they were genetically very similar, there were three genetic markers that were significantly ramped up. And guess what? Those three genetic markers seem to be affecting competitive reproductive success. The hybrids not only produce larger larvae than the natives, their little ones develop faster as well, giving them a leg up on the competition.

So what does that mean for the native population? Should these hybrids be considered a subspecies of the California tiger salamander, or of the barred tiger salamander? Or maybe a new species all their own? Bottom line, species delineation is a finicky business, and since Mother Nature isn't allowed many chances to shake it out for herself, things are starting to get messy from all our meddling -- intentional or not. But answering the question of whether invasive species can tamper with the gene pools of other species is easy: The answer is a resounding yes.