10 Technologies That Help Buildings Resist Earthquakes

Mussels: They're tasty and handy for earthquake-proofing. iStock/Thinkstock
Mussels: They're tasty and handy for earthquake-proofing. iStock/Thinkstock

While engineers make do with shape memory alloys and carbon-fiber wraps, they anticipate a future in which even better materials may be available for earthquake-resistant construction. And inspiration for these materials may likely come from the animal kingdom. Consider the lowly mussel, a bivalve mollusk found attached to ocean rocks or, after it's been removed and steamed in wine, on our dinner plate. To stay attached to their precarious perches, mussels secrete sticky fibers known as byssal threads. Some of these threads are stiff and rigid, while others are flexible and elastic. When a wave crashes on a mussel, it stays put because the flexible strands absorb the shock and dissipate the energy. Researchers have even calculated the exact ratio of stiff-to-flexible fibers -- 80:20 -- that gives the mussel its stickiness [source: Qin]. Now it's a matter of developing construction materials that mimic the mussel and its uncanny ability to stay put.

Another interesting thread comes from the south end of spiders. We all know that, pound for pound, spider silk is stronger than steel (just ask Peter Parker), but MIT scientists believe that it's the dynamic response of the natural material under heavy strain that makes it so unique. When researchers tugged and pulled on individual strands of spider silk, they found the threads were initially stiff, then stretchy, then stiff again. It's this complex, nonlinear response that makes spider webs so resilient and spider thread such a tantalizing material to mimic in the next generation of earthquake-resistant construction.