How Birth Simulators Work

Ain't Nothin' Like the Real Thing, Baby … Or Is There?
Simulation scenarios involve a nearly infinite set of variables to surprise students and help them hone their skills.
Simulation scenarios involve a nearly infinite set of variables to surprise students and help them hone their skills.
Chung Sung-Jun/Getty Images

Birth simulators today are highly sophisticated machines, capable of throwing a host of potential complications at unsuspecting trainees. Noelle is a full-size mannequin, complete with all of the limbs and joint articulation of a real woman. Noelle is controlled wirelessly via a computer with a proprietary interface. The technician piloting the training scenario is normally in a separate room up to 100 meters (300 feet) away from Noelle and her student caregivers. Training leaders can create their own birthing scenarios, and change them on the fly from the controller. The prenatal robot comes with pre-programmed sounds, but has a streaming audio option to allow a live person to speak as the voice of Noelle.

Under Noelle's skin, mechanical motion-control devices called actuators simulate contractions, convulsions and other abdominal movements, though her arms and legs are immobile. She can't squeeze a husband's hand with a crushing grip, but Noelle's eyes do dilate, and so does her cervix. Even her chest rises and falls as she breathes.

Heart rate and airway sounds are important diagnostic measurements and are a big part of the simulation. The simulated heartbeats register on real ECG monitors. Noelle's blood pressure can be monitored, but requires a special device from Gaumard rather than the methods used with real women, since there is no actual blood coursing through her veins.

Noelle's baby comes complete with umbilical cord and is held in place by a mechanism that sends the bouncing baby 'bot down the birth canal at the time of the programmer's choosing. The baby can be delivered via vaginal birth or C-section and can be oriented into positions for a vertex (head first) delivery or a breech (butt first) delivery. The baby also simulates breathing sounds and heartbeats, and its vital signs can all be monitored using the same equipment you would use on a real baby.

A lot of electronic equipment goes into this robotic simulator, so while monitoring amniotic fluid is an important part of training, any moisture has to be handled carefully so it doesn't damage and of the simulator's components. Noelle simulates hemorrhaging using fake blood, but a full water release isn't possible yet.

We mentioned complications earlier, and here is where Noelle truly offers students a unique opportunity to experience scenarios that would be extremely dangerous and stressful in real-life situations. Noelle can reproduce a wide range of complications and even a combination of problems, like shoulder dystocia (the infant's shoulder becomes lodged behind its mother's pubic bone after the head has already exited the birth canal) and a heart attack. Because she has no tether and has self-contained functions, Noelle can even be used to replicate trauma scenario births, like accident-induced labor and delivery.

By practicing complicated delivery situations in the safety of a simulation scenario, medical staff can be much more prepared when they are faced with those same complications with actual patients. Next, let's look at how those simulations play out.

More to Explore