5 Things Lego Blocks Can Teach You About Structural Engineering


Loading Constraints

Loading constraints can influence how structural engineers approach a given project. Though the term might not sound familiar, it's basically a way of questioning what will happen when weight or other factors act on a structure or object.

By using Lego bricks, you can better picture two basic principles engineers consider: static loading and dynamic loading. Static loading includes the weight and pressure on the structure while it's stationary, while dynamic loading refers to how outside forces act on the structure while it's being used. For example, every building has its physical limits for what it can support -- its static loading capacity. But what about something that's a bit more mobile -- such as an airplane that's crafted to accommodate passengers and always changing flying conditions? Engineers must consider these factors to ensure that when a plane is dynamically loaded (with people, and in midair) it's safe and efficient.

To test dynamic loading constraints, build a Lego bridge and then use a remote control car or wooden box cars of various weights to look at how they affect the structure as they move across it. Does one of the beams buckle under the added weight? Toying around with dynamic loading is far more effective than reading about it in a text book, where weights and numbers aren't tangible.

Next up, we'll talk about what every serious Lego builder needs to know.