Hydrogen Atoms and Magnetic Moments

The steps of an MRI
© 2008 HowStuffWorks.com
The steps of an MRI

When patients slide into an MRI machine, they take with them the billions of atoms that make up the human body. For the purposes of an MRI scan, we're only concerned with the hydrogen atom, which is abundant since the body is mostly made up of water and fat. These atoms are randomly spinning, or precessing, on their axis, like a child's top. All of the atoms are going in various directions, but when placed in a magnetic field, the atoms line up in the direction of the field.

These hydrogen atoms have a strong magnetic moment, which means that in a magnetic field, they line up in the direction of the field. Since the magnetic field runs straight down the center of the machine, the hydrogen protons line up so that they're pointing to either the patient's feet or the head. About half go each way, so that the vast majority of the protons cancel each other out -- that is, for each atom lined up toward the feet, one is lined up toward the head. Only a couple of protons out of every million aren't canceled out. This doesn't sound like much, but the sheer number of hydrogen atoms in the body is enough to create extremely detailed images. It's these unmatched atoms that we're concerned with now.