10 Weirdest Sources for Antibiotics


Killer Cave Bacteria

Caves like this one beneath the Carlsbad Caverns harbor rock-eating bacteria that are potential antibiotics. iStock/Thinkstock
Caves like this one beneath the Carlsbad Caverns harbor rock-eating bacteria that are potential antibiotics. iStock/Thinkstock

Remote Lechuguilla Cave, which lies 1,600 feet (488 meters) below New Mexico's Carlsbad Caverns, is the deepest limestone cave in the U.S. The cave's more than 136 miles (220 kilometers) of underground passages form one of the planet's most sprawling subterranean networks.

But it's not just the cave's size or its breathtaking 20-foot (6-meter)- tall gypsum chandeliers and other exotic rock formations that fascinate scientific researchers. The cave is also home to an assortment of rock-eating bacteria that feed on the sulfur, iron and manganese deposits found inside [source: National Parks Service].

Scientists have been collecting samples of these microorganisms in an effort to find new potential antibiotics. One promising example is a microscopic predator that goes after other bacteria. Scientists hope that one of these microorganisms may extend the life of Cubicin, currently a drug of last resort against MSRA [source: Tirrell].

Author's Note

It's been scary to watch as diseases that we thought had been conquered by antibiotics suddenly come roaring back with new, drug-resistant vigor. I read recently, for example, that the sexually-transmitted disease gonorrhea has grown resistant to nearly every antibiotic that's been used against it, so that the last remaining line of defense is ceftriaxone, followed with an oral dose of either zithromycin or doxycycline. If that treatment stops working, we're in big trouble. That's why, in my view, we have to resist the urge to trim government funding for medical research, in the interests of reducing government red ink. Instead, we should be providing stronger backing to researchers who are trying to find new antibiotics, which is a difficult and time-consuming process.

Related Articles


  • Aguilera, Mario. "Compound Discovered at Sea Shows Potency against Anthrax." Scripps Institution of Oceanography. July 17, 2013. (Jan. 20, 2014) https://scripps.ucsd.edu/news/anthracimycin-compound-shows-promise-anthrax
  • Anbuchezhian, Ramasamy, C. Gobinath and S. Ravichandran."Antimicrobial Peptide from the Epidermal Mucus of Some Estuarine Cat Fishes." World Applied Sciences Journal. 2011. (Jan. 19, 2014.) http://www.idosi.org/wasj/wasj12(3)/3.pdf
  • Appendino, G. et al. "Antibacterial cannabinoids from Cannabis sativa: a structure-activity study." Journal of Natural Products. August 2008. (Jan. 19, 2014) http://www.ncbi.nlm.nih.gov/pubmed/18681481
  • BBC News. "Frog skin may help beat antibiotic resistance." BBC News. Aug. 26, 2010. (Jan. 19, 2014) http://www.bbc.co.uk/news/health-11101278
  • Dotinga, Randy. "Gator Blood May Be New Source of Antibiotics." Washington Post. April 7, 2008. (Jan. 19, 2014) http://www.washingtonpost.com/wp-dyn/content/article/2008/04/07/AR2008040701042.html
  • Ehrenberg, Rachel. "Cockroach brains, coming to a pharmacy near you." Science News. Sept. 10, 2010. (Jan. 19, 2014) https://www.sciencenews.org/article/cockroach-brains-coming-pharmacy-near-you
  • Giovinco, Dr. Joette. "Is Alligator Blood a Human Life-Saver?" Fox 13. May 20, 2013. (Jan. 19, 2014) http://www.myfoxtampabay.com/story/21789164/2013/03/25/is-alligator-blood-a-human-life-saver
  • John Innes Centre News. "Ants and Antibiotics." Jic.ac.uk. Aug. 31, 2013. (Jan. 20, 2014) http://news.jic.ac.uk/2013/08/ants-and-antibiotics/
  • Levine, Donald P. "Vancomycin: A History." Clinical Infectious Disease. Jan. 1, 2006. (Jan. 20, 2014) http://cid.oxfordjournals.org/content/42/Supplement_1/S5.full.pdf
  • Marsh, Charmayne and Bernstein, Michael. "Alligator Blood May Put the Bite on Antibiotic-Resistant Infections." Eurekalert.org. April 6, 2008. (Jan. 19, 2014) http://www.eurekalert.org/pub_releases/2008-04/acs-abm031108.php
  • National Institute of Allergy and Infectious Diseases. "Anthrax." Niaid.nih.gov. Sept. 30, 2013. (Jan. 20, 2014) http://www.niaid.nih.gov/topics/anthrax/Pages/default.aspx
  • National Parks Service. "Lechuguilla Cave." Nps.gov. Jan. 13, 2014. (Jan. 20, 2014) http://www.nps.gov/cave/naturescience/lechuguilla_cave.htm
  • Redfern, Simon. "New antibiotic that attacks MRSA found in ocean microbe." BBC News. July 31, 2013. (Jan. 19, 2014) http://www.bbc.co.uk/news/science-environment-23523507
  • Rennie, John. "Filthy Places for Antibiotics." PLOS.org. Sept. 7, 2010. (Jan. 19, 2014) http://blogs.plos.org/retort/2010/09/07/filthy-places-for-antibiotics/
  • Roberts, Christine. "Pandas may be source of new antibiotics: report." New York Daily News. Dec. 31, 2012. (Jan. 19, 2014) http://www.nydailynews.com/life-style/health/pandas-source-new-antibiotics-report-article-1.1230657#ixzz2quKn5djT
  • Schultz, Nora. "A New MRSA Defense." MIT Technology Review. Sept. 12, 2008. (Jan. 20, 2014) http://www.technologyreview.com/news/410815/a-new-mrsa-defense/
  • Science Daily. "Ants Use Multiple Antibiotics as Weed Killers." Science Daily. Aug. 26, 2010. (Jan. 20, 2014) http://www.sciencedaily.com/releases/2010/08/100826122629.htm
  • Science Daily. "LCD Television Waste Could Help Prevent Bacterial Infections." Science Daily. June 20, 2010. (Jan. 19, 2014) http://www.sciencedaily.com/releases/2010/06/100618141651.htm
  • Szalavitz, Maia. "New Weird Source of Antimicrobial Drugs: Cockroach Brains?" Time.com. Sept. 17, 2010. (Jan. 19, 2014) http://healthland.time.com/2010/09/17/new-weird-source-of-antimicrobial-drugs-cockroach-brains/
  • Tirrell, Meg. "Cave Explorer Hunts Antibiotics 1,600 Feet Down." Bloomberg News. Feb. 27, 2013. (Jan. 20, 2014) http://www.bloomberg.com/news/2013-02-27/cave-explorer-hunts-antibiotics-1-600-feet-down-health.html
  • Wilbert, Caroline. "Chemicals in Marijuana May Fight MRSA." WebMD. Sept. 4, 2008. (Jan. 20, 2014) http://www.webmd.com/news/20080904/marijuana-chemicals-may-fight-mrsa


How Free Radicals Affect Your Body

How Free Radicals Affect Your Body

When an electron loses its partner, it creates a free radical. So is that free radical now hazardous to your health? HowStuffWorks explains.