How Fractals Work


Lots More Information

Related Articles

Sources

  • Bales, Judy. "Thinking Inside the Box: Infinity Within the Finite." Surface Design Journal. Pages 50-53. Fall 2010.
  • Cohen, Nathan. "Fractal Antennas, Part 1." Communications Quarterly. Summer 1995.
  • Eglash, Ron. "African Fractals: Modern Computing and Indigenous Design." Rutgers Univ. Press. 1999.
  • Falconer, K. J. "The Geometry of Fractal Sets." Cambridge Tracts in Mathematics, 85. Cambridge, 1985.
  • Fractal Foundation. "Online Fractal Course." (April 17, 2011)http://fractalfoundation.org/resources/lessons/
  • Mandelbrot, Benoit. "The Fractal Geometry of Nature." Freeman. 1982.
  • Mandelbrot, Benoit. "Fractals: Form, Chance, and Dimension" Freeman. 1977.
  • Mandelbrot, Benoit. "How Long is the Coastline of England?: Statistical Self-Similarity and Fractional Dimension" Science, New Series. Vol.156, no.3775. May 5, 1967.
  • NOVA. "Hunting the Hidden Dimension." PBS, 2008. Originally aired on Oct 28, 2008. (April 17, 2011)http://www.pbs.org/wgbh/nova/physics/hunting-hidden-dimension.html
  • Turcotte, Donald. "Fractals and Chaos in Geology and Geophysics." Cambridge, 1997.
  • Weisstein, Eric W. "Dragon Curve." MathWorld. (April 22, 2011)http://mathworld.wolfram.com/DragonCurve.html
  • Weisstein, Eric W. "Koch Snowflake." MathWorld. (April 22, 2011)http://mathworld.wolfram.com/KochSnowflake.html
  • Weisstein, Eric W. "Menger Sponge." MathWorld. (April 22, 2011)http://mathworld.wolfram.com/MengerSponge.html
  • Weisstein, Eric W. "SierpiƄski Sieve." MathWorld. (April 22, 2011)http://mathworld.wolfram.com/SierpinskiSieve.html
  • Weisstein, Eric W. "Strange Attractor." MathWorld. (April 22, 2011)http://mathworld.wolfram.com/StrangeAttractor.html

More to Explore