How Teleportation Will Work

Seth Brundle, Jeff Goldblum’s character in “The Fly” reminds us just how messy the whole teleportation business can be. 20th Century-Fox/Getty Images

This content is not compatible on this device.

Sick of those frenzied morning school drop-offs? Longing for a morning commute free of highway road rage and public transit bum stink?

Well, lucky for you, science is working on an answer, and it might just be as simple as scanning your body down to the subatomic level, annihilating all your favorite parts at point A and then sending all the scanned data to point B, where a computer builds you back up from nothing in a fraction of a second.

Sure, it kind of amounts to chunking your kid in a subatomic wood chipper every morning, but just think of all the time you'll save!

It's called teleportation, and you probably know it best from the likes of "Star Trek" and "The Fly." If realized for humans, this amazing technology would make it possible to travel vast distances without physically crossing the space between. Global transportation will become instantaneous, and interplanetary travel will literally become one small step for man.

Doubtful? Consider for a moment that teleportation hasn't been strictly sci-fi since 1993. That year, the concept moved from the realm of impossible fancy to theoretical reality. Physicist Charles Bennett and a team of IBM researchers confirmed that quantum teleportation was possible, but only if the original object being teleported was destroyed. Why? The act of scanning disrupts the original such that the copy becomes the only surviving original.

This revelation, first announced by Bennett at an annual meeting of the American Physical Society in March 1993, was followed by a report on his findings in the March 29, 1993, issue of Physical Review Letters. Since that time, experiments using photons have proven that quantum teleportation is, in fact, possible.

The work continues today, as researchers combine elements of telecommunications, transportation and quantum physics in astounding ways.