Like HowStuffWorks on Facebook!

How Biohacking Works


A Brief Bio of Biohacking
Oliver Medvedik, a Genspace co-founder, puts participants' DNA into a PCR reaction tube during the 2013 Digital Life Design Conference.
Oliver Medvedik, a Genspace co-founder, puts participants' DNA into a PCR reaction tube during the 2013 Digital Life Design Conference.
© Tobias Hase/dpa/Corbis

"Where is my flying car?"

It's a question that has come to symbolize the letdown many feel with how technology has played out -- an ennui born of comparing the fantasy future promised by midcentury science magazines with the shabby reality of Botox and erectile dysfunction pills.

If you're looking for the biological equivalent of flying cars, you could do worse than transhumanism, the idea that the human race can, should or must use science and technology to transcend inborn physical and mental limitations. We see hints of it in what some call "the quantified self," the trend of monitoring one's body and mind using smart watches or similar devices. But these represent the sort of packaged, proprietary applications that raise some hackers' hackles.

Biohackers are driven by the basic human desire to create, explore and innovate. They are inspired by curiosity to explore and experience new modes of existence. Such ideas reach back to sci-fi pulps, which teemed with half-robot humans and brains in mechanical bodies long before a word existed to describe them.

That term, cybernetics (from the Greek kybernetes or "steersman"), was supplied by American mathematician Norbert Wiener (1894-1964) in 1948. He coined it while investigating targeting-system feedbacks and information theory. By 1960, scientist and inventor Manfred Clynes suggested drugs and mechanical enhancements as a way to make life in space possible. Together with co-author Nathan Kline, he coined the term cyborg, a portmanteau of "cybernetic organism" [source: Popper].

Half a century later, people like Lepht Anonym, a boundary-pushing DIY grinder, and Kevin Warwick, a cyberneticist at the University of Reading, were itching to move past mere cochlear implants and insulin pumps to jump-start the cyborg future. Warwick began by implanting an RFID chip that could unlock doors. He soon moved on to implanting cybernetic sensors in his arm, by which he could manipulate a robotic hand or share sensory experiences with his similarly equipped wife across the Atlantic Ocean. Such technologies offer numerous potential medical and nonmedical uses, including telepresence robot operation or, conceivably, brain-to-brain communication [source: Popper].

Meanwhile, community biohacking spaces, which enable hobbyists and students to perform bioresearch, often with the help of professional mentors, began popping up in the 2010s. By 2013, they had expanded to around 40 independent citizen-science groups, half of them in the United States [source: Firger]. Well-known examples include Genspace, New York City's community biolab, and BioCurious, a nonprofit lab in Sunnyvale, California. Beyond conducting neighborhood bioscience, these groups contribute to a larger effort -- exemplified by MIT's iGEM (International Genetically Engineered Machine) organization and the BioBricks competition -- to educate people of all ages in genetics and biology.