What exactly is the Higgs boson?

Higgs Boson: The Final Piece of the Puzzle
The fundamental forces of the universe
The fundamental forces of the universe

As it turns out, scientists think each one of those four fundamental forces has a corresponding carrier particle, or boson, that acts upon matter. That's a hard concept to grasp. We tend to think of forces as mysterious, ethereal things that straddle the line between existence and nothingness, but in reality, they're as real as matter itself.

Some physicists have described bosons as weights anchored by mysterious rubber bands to the matter particles that generate them. Using this analogy, we can think of the particles constantly snapping back out of existence in an instant and yet equally capable of getting entangled with other rubber bands attached to other bosons (and imparting force in the process).

Scientists think each of the four fundamental ones has its own specific bosons. Electromagnetic fields, for instance, depend on the photon to transit electromagnetic force to matter. Physicists think the Higgs boson might have a similar function -- but transferring mass itself.

Can't matter just inherently have mass without the Higgs boson confusing things? Not according to the standard model. But physicists have found a solution. What if all particles have no inherent mass, but instead gain mass by passing through a field? This field, known as a Higgs field, could affect different particles in different ways. Photons could slide through unaffected, while W and Z bosons would get bogged down with mass. In fact, assuming the Higgs boson exists, everything that has mass gets it by interacting with the all-powerful Higgs field, which occupies the entire universe. Like the other fields covered by the standard model, the Higgs one would need a carrier particle to affect other particles, and that particle is known as the Higgs boson.

On July 4, 2012, scientists working with the Large Hadron Collider (LHC) announced their discovery of a particle that behaves the way the Higgs boson should behave. The results, while published with a high degree of certainty, are still somewhat preliminary. Some researchers are calling the particle "Higgslike" until the findings -- and the data -- stand up to more scrutiny. Regardless, this finding could usher in a period of rapid discovery about our universe.

Related Articles

More Great Links


  • The Collider Detector at Fermilab. "Search for the Standard Model Higgs Boson at CDF." (Jan. 13, 2012) http://www-cdf.fnal.gov/PES/higgs_pes/higgs_plain_english.html
  • European Organization for Nuclear Research. "Missing Higgs." 2008. http://user.web.cern.ch/public/en/Science/Higgs-en.html
  • European Organization for Nuclear Research. "Recipe for a Universe." 2008. (Jan. 13, 2012) http://user.web.cern.ch/public/en/Science/Recipe-en.html
  • European Organization for Nuclear Research. "The standard package." 2008. (Jan. 13, 2012) http://user.web.cern.ch/public/en/Science/StandardModel-en.html
  • Exploratorium.edu. "Origins: CERN: The Higgs Boson Particle." 2000. (Jan. 13, 2012) http://www.exploratorium.edu/origins/cern/ideas/higgs.html
  • Gardner, Laura. "Physicists say they are near epic Higgs boson discovery." Brandeis University. Dec. 13, 2011. (Jan. 13, 2012) http://www.brandeis.edu/now/2011/december/particle.html
  • Grossman, Lisa. "LHC sees hint of lightweight Higgs boson." Dec. 13, 2011. (Jan. 13, 2012) http://www.newscientist.com/article/dn21279-lhc-sees-hint-of-lightweight-higgs-boson.html
  • Krauss, Lawrence. "What is Higgs boson and why does it matter?" Dec. 13, 2011. (Jan. 13, 2012) http://www.newscientist.com/article/dn21277-what-is-the-higgs-boson-and-why-does-it-matter.html?full=true
  • Nave, R. "The Higgs Boson." Georgia State University. (Jan. 13, 2012) http://hyperphysics.phy-astr.gsu.edu/hbase/forces/higgs.html
  • Quigg, Chris. "Particle physics: What exactly is the Higgs boson? Why are physicists so sure that it really exists?" Fermi National Accelerator Laboratory. (Jan. 13, 2012) http://lutece.fnal.gov/Drafts/Higgs.html
  • Rincon, Paul. "'Big Bang' experiment starts well.'" BBC. Sept. 10, 2008. (Jan. 13, 2012) http://news.bbc.co.uk/2/hi/7604293.stm
  • Rincon, Paul. "LHC: Higgs boson 'may have been glimpsed'." BBC. Dec. 13, 2011. (Jan. 13, 2012) http://www.bbc.co.uk/news/science-environment-16158374
  • Sample, Ian and James Randerson. "What is the Higgs boson?" The Guardian. Dec. 13, 2011. (Jan. 13, 2012) http://www.guardian.co.uk/science/2011/dec/13/higgs-boson-lhc-explained

More to Explore