A collection of grenade and landmine replicas designed as training materials.

Courtesy U.S. Army

Prototype Development

­The PIF tends to be a reactive rather than pr­oactive facility. That means that the PIF responds to requests from other Army departments and projects (the PIF's customers). The PIF has a very structured prototype development process. Here are the stages:

  • First, the customer must identify a specific need. For this process, we'll assume another Army department needs to be able to coordinate air traffic at a remote Army deployment in the field.
  • Next, the PIF and customer must define the requirement that will satisfy the need. In our example, the requirement could be a mobile unit that has the mechanical and electrical capacity to serve as an air traffic control facility.
  • The third step involves determining what resources the project will require. This includes factoring in personnel, physical materials and facility space. Sometimes this also means partnering with outside contractors. The PIF tends to contract out work for small component parts while PIF personnel concentrate on larger pieces of the project. In our example, the PIF might determine that it can produce a mobile air traffic control unit completely in house.
  • The fourth step is to develop a formal proposal. The proposal outlines the complete process of prototype development from design to fabrication. The PIF includes cost data and staff requirements in the proposal. For our example unit, the proposal would explain everything from the personnel involved in the project to the materials the PIF would use in fabrication to the expected completion date for the prototype.
  • Next, the project manager staffs the project with the appropriate personnel. Then the PIF team takes another look at the proposal. If the proposal meets the customer's needs and is feasible, the PIF prepares the proposal for the customer. If the project manager determines the proposal does not meet the customer's needs, the project reverts back to the previous step and the team concentrates on creating a new proposal. If the team leader determines the PIF can't meet the customer's requirement at all, the project ends. Let's assume in our example that the project team leader assigns PIF engineers and fabricators to the assignment with no conflicts.
  • The sixth step is presenting the proposal to the customer. In this step, the customer has the opportunity to reject the proposal in part or in full. The team may have to return to step 4 and create a new proposal or halt the project completely. But if the customer approves the proposal, the PIF can move into an actual design and fabrication process. For our example, we'll say the customer agrees with PIF's proposal.
  • The seventh stage is where all the physical work comes into play. The project receives funds from the customer and begins to produce results. Let's assume for our project that the team modifies an existing Humvee vehicle to create a mobile air traffic control unit. It now has a tower and communications array inside it.
  • Throughout the entire development process, quality assurance engineers make sure that the prototype meets both the customer's needs and all other regulatory requirements. After production, the PIF tests the prototype and compares it against the requirement the customer and team determined in step 2. We'll assume that our new mobile unit passes muster.
  • The PIF delivers the new prototype to the customer. The customer can deploy the new equipment immediately. Our mobile air traffic control unit boards the next transport out to the remote Army deployment, and soon the soldiers stationed there will have a new tool to use when coordinating air traffic in the field.

This process has more in common with commercial business operations than traditional Army operations. Reportedly, some Army departments and projects have had trouble adjusting to the way the PIF does business [source: Chronister]. But it's hard to argue with results -- the PIF can often produce a prototype much more quickly and for less cost than older procedures.

Next, we'll look at some of the prototypes that have come out of the PIF.