How Landmines Work

The M14 and M16 Anti-personnel Mines

Source: U.S. Department of Defense

M14 Blast Mine

The M14 is a small, cylindrical, plastic-bodied blast mine. It is just 1.57 inches (40 mm) tall and 2.2 inches (56 mm) in diameter. It was originally developed and used by the United States in the 1950s, but it has been used and copied by many nations around the world. This particular anti-personnel mine contains only a small amount of explosive, about 31 grams of Tetryl. It is designed to cause damage to people and objects in close proximity to it.

The M14 is initially equipped with a U-shaped safety clip, which is fitted around the pressure plate. In order to activate the M14, the safety clip is removed and the pressure plate is rotated from its safety position to its armed position. The letters A (armed) and S (safety) are embossed on the pressure plate. Soldiers simply align an arrow with the A to arm the mine.

Once it is armed, any pressure of at least 19.8 pounds (9 kg) can cause the mine to detonate. When the proper amount of pressure is applied it pushes down on the Belleville spring underneath the pressure plate. This spring pushes the firing pin down on to the detonator, which ignites the main charge of Tetryl explosive.

M16 Bounding/Fragmentation Mine

Bounding mines fire up out of the ground and then explode. The M16 is made of three main parts: a mine fuse, a propelling charge to lift the mine and a projectile contained in a cast-iron housing. It is 7.83 inches (199 mm) tall and 5.24 inches (133 mm) in diameter. The M16 mine contains about 1.15 pounds (521 grams) of trinitrotoluene (TNT) explosive.

Source: U.S. Department of Defense

The fuse extends through the center of the mine to the bottom, where the propelling charge is located. To arm the mine, a safety pin is removed from the striker on top of the fuse. There are three prongs located on top of the fuse, connected to a spring-loaded wedge. The fuse encloses a percussion cap, a delay element and a black-powder charge.

The M16 can be detonated in two ways: by applying pressure or by pulling the spring-loaded release pin. Either method causes the pin to pull out of the fuse, releasing the striker and igniting the percussion cap. The percussion cap fires a delay element in the fuse, which fires a detonator after a short delay. The detonator ignites the black powder in the fuse, firing the propelling charge in the bottom of the mine. The mine flies upward to about 1.2 meters; the main charge then detonates and releases a shower of metal fragments.