How Life Works: DNA and Enzymes

Evolution can be seen in its purest form in the daily evolution of bacteria. If you have read How Cells Work, then you are familiar with the inner workings of the E. coli bacteria and can skip this section. Here's a quick summary to highlight the most important points in How Cells Work:

  • A bacterium is a small, single-celled organism. In the case of E. coli, the bacteria are about one-hundredth the size of a typical human cell. You can think of the bacteria as a cell wall (think of the cell wall as a tiny plastic bag) filled with various proteins, enzymes and other molecules, plus a long strand of DNA, all floating in water.
  • The DNA strand in E. coli contains about 4 million base pairs, and these base pairs are organized into about 1,000 genes. A gene is simply a template for a protein, and often these proteins are enzymes.
  • An enzyme is a protein that speeds up a particular chemical reaction. For example, one of the 1,000 enzymes in an E. coli's DNA might know how to break a maltose molecule (a simple sugar) into its two glucose molecules. That is all that that particular enzyme can do, but that action is important when an E. coli is eating maltose. Once the maltose is broken into glucose, other enzymes act on the glucose molecules to turn them into energy for the cell to use.
  • To make an enzyme that it needs, the chemical mechanisms inside an E. coli cell make a copy of a gene from the DNA strand and use this template to form the enzyme. The E. coli might have thousands of copies of some enzymes floating around inside it, and only a few copies of others. The collection of 1,000 or so different types of enzymes floating in the cell makes all of the cell's chemistry possible. This chemistry makes the cell "alive" -- it allows the E. coli to sense food, move around, eat and reproduce. See How Cells Work for more details.

You can see that, in any living cell, DNA helps create enzymes, and enzymes create the chemical reactions that are "life."

In the next section, we'll discuss how bacteria reproduce.