How Oil Drilling Works

A colossal offshore platform lights up the night off the coast of Norway.
Arnulf Husmo/Stone/Getty Images

In 2008 alone, the United States produced an estimated 4.9 million barrels of crude oil per day and imported 9.8 million barrels per day from other countries [source: U.S. Energy Information Administration]. This oil gets refined into gasoline, kerosene, heating oil and other products. To keep up with our consumption, oil companies must constantly look for new sources of petroleum, as well as improve the production of existing wells.

How does a company go about finding oil and pumping it from the ground? You may have seen images of black crude oil gushing out of the ground, or seen an oil well in movies and television shows like "Giant," "Oklahoma Crude," "Armageddon" and "Beverly Hillbillies." But modern oil production is quite different from the way it's portrayed in the movies.

Advertisement

In this article, we'll examine how modern oil exploration and drilling works. We'll discuss how oil is formed, found and extracted from the ground.

Oil is a fossil fuel found in many countries around the world. On the next page, we'll discuss how oil is formed and how geologists find it.

Forming Oil

Oil comes from the remains of tiny plants and animals (plankton) that died in ancient seas between 10 million and 600 million years ago. After the organisms died, they sank into the sand and mud at the bottom of the sea.

Over the years, the organisms decayed in the sedimentary layers. In these layers, there was little or no oxygen present. So microorganisms broke the remains into carbon-rich compounds that formed organic layers. The organic material mixed with the sediments, forming fine-grained shale, or source rock. As new sedimentary layers were deposited, they exerted intense pressure and heat on the source rock. The heat and pressure distilled the organic material into crude oil and natural gas. The oil flowed from the source rock and accumulated in thicker, more porous limestone or sandstone, called reservoir rock. Movements in the Earth trapped the oil and natural gas in the reservoir rocks between layers of impermeable rock, or cap rock, such as granite or marble.

Advertisement

These movements of the Earth include:

Folding - Horizontal movements press inward and move the rock layers upward into a fold or anticline.

Faulting - The layers of rock crack, and one side shifts upward or downward.

Pinching out - A layer of impermeable rock is squeezed upward into the reservoir rock.

Locating Oil

Searching for oil over water using seismology
Photo courtesy the Energy Institute

Whether employed directly by an oil company or under contract from a private firm, geologists are the ones responsible for finding oil. Their task is to find the right conditions for an oil trap -- the right source rock, reservoir rock and entrapment. Many years ago, geologists interpreted surface features, surface rock and soil types, and perhaps some small core samples obtained by shallow drilling. Modern oil geologists also examine surface rocks and terrain, with the additional help of satellite images. However, they also use a variety of other methods to find oil. They can use sensitive gravity meters to measure tiny changes in the Earth's gravitational field that could indicate flowing oil, as well as sensitive magnetometers to measure tiny changes in the Earth's magnetic field caused by flowing oil. They can detect the smell of hydrocarbons using sensitive electronic noses called sniffers. Finally, and most commonly, they use seismology, creating shock waves that pass through hidden rock layers and interpreting the waves that are reflected back to the surface.

In seismic surveys, a shock wave is created by the following:

Advertisement

  • Compressed-air gun - shoots pulses of air into the water (for exploration over water)
  • Thumper truck - slams heavy plates into the ground (for exploration over land)
  • Explosives - detonated after being drilled into the ground (for exploration over land) or thrown overboard (for exploration over water)

The shock waves travel beneath the surface of the Earth and are reflected back by the various rock layers. The reflections travel at different speeds depending upon the type or density of rock layers through which they must pass. Sensitive microphones or vibration detectors detect the reflections of the shock waves -- hydrophones over water, seismometers over land. Seismologists interpret the readings for signs of oil and gas traps.

Once geologists find a prospective oil strike, they mark the location using GPS coordinates on land or by marker buoys on water.

Oil Drilling Preparation

Once the site has been selected, scientists survey the area to determine its boundaries, and conduct environmental impact studies if necessary. The oil company may need lease agreements, titles and right-of way accesses before drilling the land. For off-shore sites, legal jurisdiction must be determined.

After the legal issues are settled, the crew goes about preparing the land:

Advertisement

  1. The land must be cleared and leveled, and access roads may be built.
  2. Because water is used in drilling, there must be a source of water nearby. If there is no natural source, the crew drills a water well.
  3. The crew digs a reserve pit, which is used to dispose of rock cuttings and drilling mud during the drilling process, and lines it with plastic to protect the environment. If the site is an ecologically sensitive area, such as a marsh or wilderness, then the cuttings and mud must be disposed of offsite -- trucked away instead of placed in a pit.

Once the land has been prepared, the crew digs several holes to make way for the rig and the main hole. A rectangular pit called a cellar is dug around the location of the actual drilling hole. The cellar provides a work space around the hole for the workers and drilling accessories. The crew then begins drilling the main hole, often with a small drill truck rather than the main rig. The first part of the hole is larger and shallower than the main portion, and is lined with a large-diameter conductor pipe. The crew digs additional holes off to the side to temporarily store equipment -- when these holes are finished, the rig equipment can be brought in and set up.

Depending upon the remoteness of the drill site and its access, it may be necessary to bring in equipment by truck, helicopter or barge. Some rigs are built on ships or barges for work on inland water where there is no foundation to support a rig (as in marshes or lakes).

In the next section, we'll look at the major systems of an oil rig.

Oil Rig Systems

Anatomy of an oil rig

Once the equipment is at the site, the crew sets the rig up. Here are the major systems of a land oil rig:

Power system
  • large diesel engines - burn diesel-fuel oil to provide the main source of power
  • electrical generators - powered by the diesel engines to provide electrical power

Mechanical system - driven by electric motors

Advertisement

  • hoisting system - used for lifting heavy loads; consists of a mechanical winch (drawworks) with a large steel cable spool, a block-and-tackle pulley and a receiving storage reel for the cable
  • turntable - part of the drilling apparatus

Rotating equipment - used for rotary drilling

  • swivel - large handle that holds the weight of the drill string; allows the string to rotate and makes a pressure-tight seal on the hole
  • kelly - four- or six-sided pipe that transfers rotary motion to the turntable and drill string
  • turntable or rotary table - drives the rotating motion using power from electric motors
  • drill string - consists of drill pipe (connected sections of about 30 feet (10 meters) and drill collars (larger diameter, heavier pipe that fits around the drill pipe and places weight on the drill bit)
  • drill bit(s) - end of the drill that actually cuts up the rock; comes in many shapes and materials (tungsten carbide steel, diamond) that are specialized for various drilling tasks and rock formations

Casing - large-diameter concrete pipe that lines the drill hole, prevents the hole from collapsing, and allows drilling mud to circulate

Mud circulation in the hole
Photo courtesy the Energy Institute

Circulation system - pumps drilling mud (mixture of water, clay, weighting material and chemicals, used to lift rock cuttings from the drill bit to the surface) under pressure through the kelly, rotary table, drill pipes and drill collars

  • pump - sucks mud from the mud pits and pumps it to the drilling apparatus
  • pipes and hoses - connects pump to drilling apparatus
  • mud-return line - returns mud from the hole
  • shale shaker - shaker/sieve that separates rock cuttings from the mud
  • shale slide - conveys cuttings to the reserve pit
  • reserve pit - collects rock cuttings separated from the mud
  • mud pits - where drilling mud is mixed and recycled
  • mud-mixing hopper - where new mud is mixed and then sent to the mud pits

Derrick - support structure that holds the drilling apparatus; tall enough to allow new sections of drill pipe to be added to the drilling apparatus as drilling progresses

Blowout preventer - high-pressure valves (located under the land rig or on the sea floor) that seal the high-pressure drill lines and relieve pressure when necessary to prevent a blowout (uncontrolled gush of gas or oil to the surface, often associated with fire)

The Oil Drilling Process

Rotary workers trip drill pipe.
Photo courtesy ConocoPhillips

The crew sets up the rig and starts the drilling operations. First, from the starter hole, the team drills a surface hole down to a pre-set depth, which is somewhere above where they think the oil trap is located. There are five basic steps to drilling the surface hole:

  1. Place the drill bit, collar and drill pipe in the hole.
  2. Attach the kelly and turntable, and begin drilling.
  3. As drilling progresses, circulate mud through the pipe and out of the bit to float the rock cuttings out of the hole.
  4. Add new sections (joints) of drill pipes as the hole gets deeper.
  5. Remove (trip out) the drill pipe, collar and bit when the pre-set depth (anywhere from a few hundred to a couple-thousand feet) is reached.

Once they reach the pre-set depth, they must run and cement the casing -- place casing-pipe sections into the hole to prevent it from collapsing in on itself. The casing pipe has spacers around the outside to keep it centered in the hole.

Advertisement

The casing crew puts the casing pipe in the hole. The cement crew pumps cement down the casing pipe using a bottom plug, a cement slurry, a top plug and drill mud. The pressure from the drill mud causes the cement slurry to move through the casing and fill the space between the outside of the casing and the hole. Finally, the cement is allowed to harden and then tested for such properties as hardness, alignment and a proper seal.

In the next section we'll find out what happens once the drill bit reaches the final depth.

Testing for Oil

Drilling continues in stages: The crew drills, then runs and cements new casings, then drills again. When the rock cuttings from the mud reveal the oil sand from the reservoir rock, the crew may have reached the well's final depth. At this point, crew members remove the drilling apparatus from the hole and perform several tests to confirm this finding:

  • Well logging - lowering electrical and gas sensors into the hole to take measurements of the rock formations there
  • Drill-stem testing - lowering a device into the hole to measure the pressures, which will reveal whether reservoir rock has been reached
  • Core samples - taking samples of rock to look for characteristics of reservoir rock

Once they've reached the final depth, the crew completes the well to allow oil to flow into the casing in a controlled manner. First, they lower a perforating gun into the well to the production depth. The gun has explosive charges to create holes in the casing through which oil can flow. After the casing has been perforated, they run a small-diameter pipe (tubing) into the hole as a conduit for oil and gas to flow up through the well. A device called a packer is run down the outside of the tubing. When the packer is set at the production level, it's expanded to form a seal around the outside of the tubing. Finally, they connect a multi-valved structure called a Christmas tree to the top of the tubing and cement it to the top of the casing. The Christmas tree allows them to control the flow of oil from the well.

Advertisement

After the well is completed, the crew must start the flow of oil into the well. For limestone reservoir rock, acid is pumped down the well and out the perforations. The acid dissolves channels in the limestone that lead oil into the well. For sandstone reservoir rock, a specially blended fluid containing proppants (sand, walnut shells, aluminum pellets) is pumped down the well and out the perforations. The pressure from this fluid makes small fractures in the sandstone that allow oil to flow into the well, while the proppants hold these fractures open. Once the oil is flowing, the oil rig is removed from the site and production equipment is set up to extract the oil from the well.

Extracting Oil

After the rig is removed, the crew puts a pump on the well head.

In the pump system, an electric motor drives a gear box that moves a lever. The lever pushes and pulls a polishing rod up and down. The polishing rod is attached to a sucker rod, which is attached to a pump. This system forces the pump up and down, creating a suction that draws oil up through the well.

Advertisement

In some cases, the oil may be too heavy to flow. In these cases, the crew drills a second hole into the reservoir and injects steam under pressure. The heat from the steam thins the oil in the reservoir, and the pressure helps push it up the well. This process is called enhanced oil recovery.

Recently, another type of oil drilling has made the news: offshore oil drilling. Learn more about it in the next section.

Offshore Oil Drilling

Not all oil is accessible on land or in shallow waters. You can find some oil deposits buried deep under the ocean floor. Reaching these oil deposits is dangerous, but if done correctly, it can also be rewarding. If things go wrong, however, the results can be deadly both for oil workers and the surrounding environment.

Using sonic equipment, oil companies determine the drilling sites most likely to produce oil. Then they use a mobile offshore drilling unit (MODU) to dig the initial well. Some units are converted into production rigs, meaning they switch from drilling for oil to capturing oil once it's found. Most of the time, the oil company will replace the MODU with a more permanent oil production rig to capture oil.

Advertisement

There are four main types of MODUs:

  • A submersible MODU usually consists of a barge that rests on the sea floor at depths of around 30 to 35 feet (9.1 to 10.7 meters). On the barge's deck are steel posts that extend above the water line. A drilling platform rests on top of the steel posts. These rigs are typically used in areas with calm water.
  • A jackup is a rig that sits on top of a floating barge. A ship tows the barge to the drilling site. Once positioned, the jackup can extend legs down to the sea floor. The legs are loaded in such a way that they don't penetrate the floor. Once each leg is secure, the jackup continues to ratchet the legs so that the platform rises above the water level. This keeps the rig safe from tidal motions and waves. Jackups can operate in depths of up to 525 feet (160 meters).
  • Drill ships are ships that have a drilling rig on the top deck. The drill operates through a hole in the hull. Drill ships can pilot to the drill site and then use a combination of anchors and propellers to correct for drift as the rig drills for oil. They can operate in deep water conditions.
  • Semisubmersibles float on the surface of the ocean on top of huge, submerged pontoons. Some have propulsion systems, which allow them to navigate to drilling sites under their own power while others require a second vessel to tow them to the right location. Most use several anchors -- up to a dozen -- that help maintain the structure's orientation. Computers control the tension on each anchor chain to correct for drift. Some can convert from drilling rigs to production rigs, reducing the need for a second rig to take its place once oil is found.

The MODU's job is to drill down into the ocean's floor to find oil deposits. The part of the drill that extends below the deck and through the water is called the riser. The riser allows for drilling fluids to move between the floor and the rig. Engineers lower a drill string -- a series of pipes designed to drill down to the oil deposit -- through the riser.

At the sea floor is the blowout preventer (BOP). The blowout preventer has a pair of hydraulically-powered clamps that can close off the pipe leading up to the rig in the case of a blowout. As the rig drills down, engineers must add more pipe to the drill string. Each section of pipe is about 30 feet long (9.1 meters).

To add stability to the well, the engineers use metal casings, much as they do with land-based oil rigs. These casings help keep the well from collapsing in on itself. Each casing is lined with cement walls. Casings get narrower as the well gets deeper. Oil companies use progressively smaller drill bits as the well's depth increases. At each annulus -- the spot where a narrower casing joins with a wider one -- engineers use a liner hanger O-ring to seal the two sections together.

When the MODU hits oil, engineers must seal the well to prepare it for a production rig. The engineers will use a pair of plugs to seal off the well bore. The bottom plug sits near the oil deposit. Drilling mud or seawater provides the pressure to hold the plug in place while the engineers place a top plug to cap the oil well. Then the well is ready for a production rig to take over. Offshore production rigs work in a similar way to land-based oil rigs.

With all of this oil-drilling technology in use, and new methods in development, the question remains: Will we have enough oil to meet our needs? Current estimates suggest that we have enough oil for about 63 to 95 years to come, based on current and future finds and present demands.

For more information on oil drilling and related topics, including oil refining, check out the links on the next page.

Lots More Information

­­­Related Articles
­­More Great Links

  • Australian Institute of Petroleum. "Offshore Oil Drilling." Earth Science Australia. (June 21, 2010) http://earthsci.org/mineral/energy/gasexpl/offshore.html
  • Diamond Offshore. "Offshore Drilling Basics." (June 22, 2010) http://www.diamondoffshore.com/ourCompany/ourcompany_offshorebasics.php
  • Minerals Management Service. "Mobil Offshore Drilling Unit (MODU)." (June 21, 2010) http://www.mms.gov/ooc/Assets/KatrinaAndRita/BackgrounderMODU.pdf
  • Oil Gas Glossary. "Barge Submersible Rig Defiinition." 2010. (June 21, 2010) http://oilgasglossary.com/posted-barge-submersible-rig.html
  • Ritzholtz, Barry. "Deepwater Horizon." The Big Picture. May 25, 2010. (June 21, 2010) http://www.ritholtz.com/blog/2010/05/deepwater-horizon-2/
  • U.S. Energy Information Administration. "Petroleum Basic Statistics." July 2009. (July 6, 2010) http://www.eia.doe.gov/basics/quickoil.html