How Helicopters Work

By: Tom Harris & Talon Homer  | 

Anatomy of a Helicopter: Working the Controls

helicopter cockpit illustration
This diagram takes us inside a helicopter cockpit.

Fuselage — The main body of the helicopter is known as the fuselage. In many models, a frameless plastic canopy surrounds the pilot and connects in the rear to a flush-riveted aluminum frame. Aluminum wasn't widely used in aeronautical applications until the early 1920s, but its appearance helped engineers make their helicopters lighter and, as a result, easier to fly.

Cyclic Control — A helicopter pilot controls the pitch, or angle, of the rotor blades with two inputs: the cyclic- and collective-pitch levers, often just shortened to the cyclic and the collective. The cyclic, or "stick," comes out of the floor of the cockpit and sits between the pilot's legs, enabling a person to tilt the craft to either side or forward and backward.


Collective Control — The collective-pitch lever is responsible for up-and-down movements. For example, during takeoff, the pilot uses the collective-pitch lever to increase the pitch of all the rotor blades by the same amount.

Foot pedals — A pair of foot pedals controls the tail rotor. Working the pedals affects which way the helicopter points, so pushing the right pedal deflects the tail of the helicopter to the left and the nose to the right; the left pedal turns the nose to the left.

Tail boom — The tail boom extends out from the rear of the fuselage and holds the tail rotor assemblies. In some models, the tail boom is nothing more than an aluminum frame. In others, it's a hollow carbon-fiber or aluminum tube.

Anti-torque tail rotor — Without a tail rotor, the main rotor of a helicopter simply spins the fuselage in the opposite direction. It's enough to make your stomach heave just thinking about all that endless circling. Thankfully, Igor Sikorsky had the idea to install a tail rotor to counter this torque reaction and provide directional control. In twin-rotor helicopters, the torque produced by the rotation of the front rotor is offset by the torque produced by a counter-rotating rear rotor.

Landing skids — Some helicopters have wheels, but most have skids, which are hollow tubes with no wheels or brakes. A few models have skids with two ground-handling wheels.

The main rotor, of course, is the most important part of a helicopter. It's also one of the most complex in terms of its construction and operation. In the next section, we'll peer at the rotor assembly of a typical helicopter.