Robot Competitions

Can you read my mind?

Honda Research Institute and ATR Computational Neuroscience Laboratories partnered in 2006 to develop a means of controlling ASIMO through thought. Scientists and engineers used an MRI Machine to record a subject’s brain patterns when making a series of hand gestures (a closed fist and the “V” peace sign). The recording was then transmitted to a robotic hand, which decoded the information and duplicated the subject’s gestures. Because the MRI system was non-invasive, there was no need for any surgical procedures.

Honda hopes that this is the first step in developing a system that will allow paralyzed people to control devices such as ASIMO by simply thinking about it. Much more research must be done to allow users to execute complex tasks and to develop a smaller, lightweight device to record brain patterns.

Curious About Servos?

Check out the Northwestern University Mechatronics Design Laboratory's Introduction to Servo Motors.

Controlling and Powering ASIMO

ASIMO is not an autonomous robot. It can't enter a room and make decisions on its own about how to navigate. ASIMO either has to be programmed to do a specific job in a specific area that has markers that it understands, or it has to be manually controlled by a human.

ASIMO can be controlled by four methods:

  • Wireless controller (sort of like a joystick)
  • Gestures
  • Voice commands

Using 802.11 wireless technology and a laptop or desktop computer, you can control ASIMO as well as see what ASIMO sees via its camera eyes. ASIMO can also use its PC connection to access the Internet and retrieve information for you, such as weather reports and news.

The wireless joystick controller operates ASIMO's movements the same way you would operate a remote-control car. You can make ASIMO go forward, backward, sideways, diagonally, turn in place, walk around a corner or run in circles. Making ASIMO move by remote control may not seem that advanced, but ASIMO does have the ability to self-adjust its steps. If you have it walk forward, and it encounters a slope or some sort of obstacle, ASIMO automatically adjusts its steps to accommodate the terrain.

ASIMO can recognize and react to several gestures and body postures, allowing users to command ASIMO nonverbally. You can point to a particular spot you want ASIMO to walk towards, for example, and it will follow your lead. If you wave to ASIMO, it will respond with a wave of its own. It can even recognize when you want to shake its hand.

ASIMO can understand and execute simple, preprogrammed verbal commands. The number of commands that can be programmed into its memory is practically unlimited. You can also have your voice registered in its programming, making it easier for ASIMO to recognize you.

In addition to the voice commands for controlling ASIMO's movements, there are also spoken commands to which ASIMO can respond verbally. This is the feature that has made it possible for ASIMO to work as a receptionist, greeting visitors and answering questions.

Like most other technologies in the robotics field, ASIMO is powered by servo motors. These are small but powerful motors with a rotating shaft that moves limbs or surfaces to a specific angle as directed by a controller. Once the motor has turned to the appropriate angle, it shuts off until it is instructed to turn again. For example, a servo may control the angle of a robot's arm joint, keeping it at the right angle until it needs to move, and then controlling that move. Servos use a position-sensing device (also called a digital decoder) to ensure that the shaft of the motor is in the right position. They usually use power proportional to the mechanical load they are carrying. A lightly loaded servo, for example, doesn't use much energy.

ASIMO has 34 servo motors in its body that move its torso, arms, hands, legs, feet, ankles and other moving parts. ASIMO manages a series of servo motors to control each kind of movement.

ASIMO is powered by a rechargeable, 51.8 volt lithium ion (Li-ION) battery that lasts for one hour on a single charge. The battery is stored in ASIMO's backpack and weighs about 13 pounds. ASIMO's battery takes three hours to fully charge, so a second (and third) battery is crucial if you needed ASIMO to operate for very long. Users can charge the battery onboard ASIMO through a power connection or remove the backpack to charge separately.