Can scientists create a star on Earth?

Star Qualities
The National Spherical Torus Experiment fusion reactor at the Princeton University Plasma Physics Laboratory.
The National Spherical Torus Experiment fusion reactor at the Princeton University Plasma Physics Laboratory.
AP Photo/Princeton University Plasma Physics Laboratory

Creating enough energy to overcome electromagnetic force isn't easy but the United States managed to do it on Nov. 1, 1952. That's when Ivy Mike, the world's first hydrogen bomb, detonated on Elugelab Island. The bomb had two stages. The first stage was a fission bomb. Fission is the process of splitting a nucleus. It's the type of bomb the United States used on Nagasaki and Hiroshima to end World War II.

The fission bomb element of Ivy Mike was necessary to create the massive amount of energy required to overcome the electromagnetic force of hydrogen to fuse it into helium. Heat from the initial explosion transferred through the lead casing of the bomb to a flask containing liquid deuterium. A plutonium rod inside the flask acted as the ignition for the fusion reaction.

The resulting explosion was 10.4 megatons in size. It completely obliterated the island, leaving behind a crater 164 feet deep (nearly 50 meters) and 1.2 miles (1.9 kilometers) across [source: Brookings Institution]. For a brief moment, man had harnessed the power of the stars to create a weapon of immense power. The thermonuclear age had begun.

Laboratories around the world are now trying to find a way to harness fusion as an energy source. If they can find a way to create sustainable and controllable reactions, scientists could use fusion to provide massive amounts of power for millions of years. There's no shortage of fuel -- hydrogen is plentiful and the oceans have large amounts of deuterium in them.

But getting to the point where we can harness fusion for power is going to take years of research and billions of dollars in resources. The amount of power required to initiate fusion coupled with the intense heat created by the event make it difficult to build a facility capable of containing a reaction. Some scientists are looking at massive lasers as a way to ignite a fusion event. Others are exploring options with plasma -- the fourth state of matter. But no one has unlocked the secret just yet.

So, we can create a star on Earth -- at least for a short time. But it remains to be seen if we can sustain such a creation and harness its astounding energy.

Learn more about stars and energy by following the links on the next page.

More to Explore