How the MARS Turbine Will Work

Inside MARS

The MARS envelope will be made of a durable material like that used in bulletproof vests.
The MARS envelope will be made of a durable material like that used in bulletproof vests.
Magenn Power

Magenn Power designed its turbine not only for easy deployment, but also for easy maintenance. Obviously, a blimplike object floating at 1,000 feet (305 meters) could receive quite a beating from the elements, but the company estimates the MARS should last at least 15 years before requiring maintenance. To achieve this longevity, the inflatable part of the turbine is made from an extremely durable fabric used by most current airships. The woven outer part is actually made from the same material used in bulletproof vests and is lined with a coating that protects it from UV rays and abrasion. The inner portion is coated with Mylar (the silver part you see in helium balloons) to prevent the helium gas from escaping.

Since the MARS is located at such high altitudes, it was also designed to be able to withstand strong winds. While conventional turbines will shut down at wind speeds in excess of 45 mph, the MARS can function at speeds greater than 63 mph. At the other end of the spectrum, the MARS turbine can also convert wind energy into electricity at wind speeds as low as 7 mph [source: Magenn].

Part of what enables the MARS to stay vertical at high wind speeds is due to something called the Magnus effect. This refers to the lift created when a curved object spins while moving in a fluid medium like air. When the object spins, an area of high pressure forms beneath it and causes it to rise. Golf balls, when hit a certain way, and curveball pitches in baseball, have a back spin that causes them to lift in flight -- this is the Magnus effect. Since the effect increases as wind speed increases, the MARS is able to use it in combination with the lift from the helium to maintain a near vertical position and not lean in high winds.

The wide range of speeds at which it can operate means that the MARS can deliver output much closer to its rated capacity than standard designs can. This is because although wind energy can theoretically generate significant amounts of electricity, most generators only produce a fraction of that because of inconsistent winds.

The design of the MARS turbine didn't just appear to its creator overnight, though. It's actually been around for quite a while. Find out where MARS came from -- and where it's going -- on the next page.