Shock Absorbers

Shock absorbers aren't just for cars. If you were going on Coney Island's Parachute Jump back in the day, you would have been glad to see the shock absorbers resting at the bottom, ready to soften your landing.


Another tried-and-true technology to help buildings stand up to earthquakes takes its cue from the auto industry. You're familiar with the shock absorber -- the device that controls unwanted spring motion in your car. Shock absorbers slow down and reduce the magnitude of vibratory motions by turning the kinetic energy of your bouncing suspension into heat energy that can be dissipated through hydraulic fluid. In physics, this is known as damping, which is why some people refer to shock absorbers as dampers.

Turns out dampers can be useful when designing earthquake-resistant buildings. Engineers generally place dampers at each level of a building, with one end attached to a column and the other end attached to a beam. Each damper consists of a piston head that moves inside a cylinder filled with silicone oil. When an earthquake strikes, the horizontal motion of the building causes the piston in each damper to push against the oil, transforming the quake's mechanical energy into heat.