10 Technologies That Help Buildings Resist Earthquakes


Cardboard Tubes

In this illustration, you can see the cardboard cathedral designed by Japanese architect Shigeru Ban. The temporary structure, which also uses timber, steel and a concrete base, will accommodate 700 patrons while a permanent cathedral is built. Christchurch Cathedral via Getty Images
In this illustration, you can see the cardboard cathedral designed by Japanese architect Shigeru Ban. The temporary structure, which also uses timber, steel and a concrete base, will accommodate 700 patrons while a permanent cathedral is built. Christchurch Cathedral via Getty Images

And what about developing countries, where it's not economically feasible to incorporate anti-earthquake technologies into houses and office buildings? Are they doomed to suffer thousands of casualties every time the earth shakes? Not necessarily. Teams of engineers are working all over the world to design earthquake-resistant structures using locally available or easily obtainable materials. For example, in Peru, researchers have made traditional adobe structures much stronger by reinforcing walls with plastic mesh. In India, engineers have successfully used bamboo to strengthen concrete. And in Indonesia, some homes now stand on easy-to-make bearings fashioned from old tires filled with sand or stone.

Even cardboard can become a sturdy, durable construction material. Japanese architect Shigeru Ban has designed several structures that incorporate cardboard tubes coated with polyurethane as the primary framing elements. In 2013, Ban unveiled one of his designs -- the Transitional Cathedral -- in Christchurch, New Zealand. The church uses 98 giant cardboard tubes reinforced with wooden beams [source: Slezak]. Because the cardboard-and-wood structure is extremely light and flexible, it performs much better than concrete during seismic events. And if it does collapse, it's far less likely to crush people gathered inside. All in all, it makes you want to treat the cardboard tubes nestled in your toilet paper roll with a little more respect.

Author's Note: 10 Technologies That Help Buildings Resist Earthquakes

When the 2011 Virginia earthquake struck, I was about 55 miles (89 kilometers) from the epicenter. It produced a locomotive-like rumbling and moved the earth in an unsettling way that's hard to describe. In the small towns of Louisa and Mineral, near my mother's house, a couple of structures collapsed, and many more experienced significant damage. While the quake itself was frightening, what was more disturbing was our collective sense that, being so far from the Ring of Fire and the constant threat of tectonic activity, we were somehow insulated from these kinds of events. Makes me wonder if the building codes in Virginia have been updated to incorporate some of these earthquake-resistant technologies.

Related Articles


  • "Advanced Earthquake Resistant Design Techniques." Multidisciplinary Center for Earthquake Engineering Research (MCEER). 2010. (Aug. 26, 2013) http://mceer.buffalo.edu/infoservice/reference_services/adveqdesign.asp
  • Barras, Colin. "Invisibility cloak could hide buildings from quakes." New Scientist. June 26, 2009. (Aug. 26, 2013) http://www.newscientist.com/article/dn17378#.Uh30mZJwpBk
  • Benson, Etienne. "Ancient civilizations shaken by quakes, say Stanford scientists." SpaceDaily. Dec. 17, 2001. (Aug. 26, 2013) http://www.spacedaily.com/news/earthquake-01g.html
  • Boyle, Rebecca. "Japanese Home-Levitation System Could Protect Buildings From Earthquakes." Popular Science. March 1, 2012. (Aug. 26, 2013) http://www.popsci.com/technology/article/2012-03/japanese-levitating-homes-could-survive-earthquakes-unscathed
  • Boyle, Rebecca. "Stretchy, Sticky Mussel Fibers Inspire New Types of Tough Waterproof Adhesives." Popular Science. Feb. 1, 2011. (Aug. 26, 2013) http://www.popsci.com/technology/article/2011-01/stretchy-sticky-mussel-fibers-inspire-new-types-tough-waterproof-adhesives
  • Carroll, Chris. "The Big Idea: Safe Houses." National Geographic Magazine. (Aug. 26, 2013) http://ngm.nationalgeographic.com/big-idea/10/earthquakes
  • Chandler, David L. "How spider webs achieve their strength." MIT News. Feb. 2, 2012. (Aug. 26, 2013) http://web.mit.edu/newsoffice/2012/spider-web-strength-0202.html
  • Clayton, Bill. "Earthquake-Resistant Construction -- Solid Business." Engineering Forum. April 16, 2010. (Aug. 26, 2013) http://forum.engin.umich.edu/2010/04/earthquake-resistant-construction-solid.html
  • Dillow, Clay. "New Earthquake-Resistant Design Pulls Buildings Upright After Violent Quakes." Popular Science. Sept. 2, 2009. (Aug. 26, 2013) http://www.popsci.com/scitech/article/2009-09/new-earthquake-resistant-design-keeps-buildings-standing-during-violent-quakes
  • Eatherton, M.R., J.F. Hajjar, G.G. Deierlein, H. Krawinkler, S. Billington and X. Ma. "Controlled Rocking of Steel-Framed Buildings with Replaceable Energy Dissipating Fuses." The 14th World Conference on Earthquake Engineering. Oct. 12, 2008. (Aug. 26, 2013) ftp://jetty.ecn.purdue.edu/spujol/Andres/files/05-06-0026.PDF
  • Eddy, Nathan. "Taipei 101's 730-Ton Tuned Mass Damper." Popular Mechanics. July 19, 2005. (Aug. 26, 2013) http://www.popularmechanics.com/technology/gadgets/news/1612252
  • Fischetti, Mark. "Shock Absorbed." Scientific American. October 2004.
  • Hamburger, Ronald O. "Earthquakes and Seismic Design." American Institute of Steel Construction. November 2009. (Aug. 26, 2013) http://www.aisc.org/WorkArea/showcontent.aspx?id=22784
  • Kelley, Michael. "The Japanese Are Using Levitation Technology To Make Earthquake-Proof Buildings." Business Insider. March 1, 2012. (Aug. 26, 2013) http://www.businessinsider.com/the-japanese-are-using-levitation-technology-to-make-earthquake-proof-buildings-2012-3
  • Maffei, Joe and Noelle Yuen. "Seismic Performance and Design Requirements for High-Rise Concrete Buildings." Structure Magazine. April 2007. (Aug. 26, 2013) http://www.structuremag.org/article.aspx?articleID=427
  • Qin, Zhao and Markus J. Buehler. "Impact tolerance in mussel thread networks by heterogeneous material distribution." Nature Communications. July 23, 2013. (Aug. 26, 2013) http://www.nature.com/ncomms/2013/130723/ncomms3187/full/ncomms3187.html
  • Raffiee, Misha. "Smart Materials Improve Earthquake-Resistant Bridge Design." LiveScience. Aug. 17, 2012. (Aug. 26, 2013) http://www.livescience.com/22317-smart-materials-earthquake-safe-bridges-nsf-bts.html
  • Saadatmanesh, Hamid, Mohammad R. Ehsani and Limin Jin. "Repair of Earthquake-Damaged RC Columns with FRP Wraps." ACI Structural Journal. March-April 1997. (Aug. 26, 2013) http://quakewrap.com/frp%20papers/RepairofEarthquake-DamagedRCColumnswithFRPWraps.pdf
  • Slezak, Michael. "Quake-proof cathedral made of cardboard unveiled." New Scientist. Aug. 19, 2013. (Aug. 26, 2013) http://www.newscientist.com/article/dn24058-quakeproof-cathedral-made-of-cardboard-unveiled.html?cmpid=RSS|NSNS|2012-GLOBAL|online-news#.Uh_-f9Wnaph
  • Smith, Dan. "Seismic Invisibility Cloak Could Hide Buildings From Earthquakes." Popular Science. June 26, 2009. (Aug. 26, 2013) http://www.popsci.com/scitech/article/2009-06/cloak-could-make-buildings-inviible-earthquakes
  • Subbaraman, Nidhi. "Super-strong mussel fibers could inspire earthquake-proof buildings." NBC News. July 23, 2013. (Aug. 26, 2013) http://www.nbcnews.com/science/super-strong-mussel-fibers-could-inspire-earthquake-proof-buildings-6C10722275
  • Thompson, Kalee. "Robust, or Risky? What Makes an Earthquake-Resistant Building." Popular Mechanics. (Aug. 26, 2013) http://www.popularmechanics.com/technology/engineering/architecture/what-makes-an-earthquake-resistant-building#slide-1
  • Vastag, Brian. "Japan a leader in engineering earthquake-proof structures, helping to limit damage." Washington Post. March 12, 2011. (Aug. 26, 2013) http://www.washingtonpost.com/wp-dyn/content/article/2011/03/11/AR2011031106948.html
  • Ward, Logan. "The Earthquake-Resilient Building." Popular Mechanics. Sept. 30, 2010. (Aug. 26, 2013) http://www.popularmechanics.com/technology/engineering/architecture/earthquake-proof-building-that-is-built-to-collapse
  • Zorich, Zach. "Concrete Gets Flexible." Discover Magazine. Aug. 6, 2005. (Aug. 26, 2013) http://discovermagazine.com/2005/aug/concrete-gets-flexible#.Uh34npJwpBk


Would Sonic the Hedgehog Be Able to Survive His Own Speed?

Would Sonic the Hedgehog Be Able to Survive His Own Speed?

Could Sonic the Hedgehog realistically handle supersonic speeds? HowStuffWorks explores what else Sonic might need to survive his speediness.