Nuclear Science
Nuclear science is the study of sub-atomic particles and their application in various disciplines. Here you can learn about nuclear power plants, atomic theory and radiation.
Brown Noise vs. White Noise: Which Is Best for Quality Sleep?
Can a sound wave kill you?
Can two cans and a string really be used to talk over a distance?
Understanding the Empirical Formula in Chemistry
The Most Expensive Metal in the World Isn't Gold or Platinum
Delta-8 vs. Delta-9: Comparing Types of THC
How Electricity Works
How Faraday Cages Work
How Gasoline Works
What do bugs have to do with forensic science?
5 Things You Didn't Know About Autopsies
Do a Person's Fingerprints Change After Death?
How Alchemy Paved the Way for Chemistry
How did Nikola Tesla change the way we use energy?
Time May Not Exist, Say Some Physicists and Philosophers
Why Does Ice Stick to Your Fingers?
What if I forgot to remove a piercing before an MRI?
A Kid-friendly Introduction to Magnets and Magnetism
Congruent Angles: Definition, Symbol and Key Theorems
Adjacent Angles: Types and Examples
What Is the Associative Property of Mathematics?
5 Hugely Fun Facts About Mass (Not Weight)
Antarctica's Spooky Cosmic Rays Might Shatter Physics As We Know It
Entropy: The Invisible Force That Brings Disorder to the Universe
Why Are School Buses Yellow?
HowStuffWorks: How To Draw An Impossible Shape
What Are the Colors in the Visible Spectrum?
Learn More / Page 2
The seriously ambitious experiment aims to understand the mysterious neutrino and maybe even figure out why matter won out over antimatter during the Big Bang.
The proposed collider would dwarf the existing Large Hadron Collider. But is the $22 billion price tag worth it?
Who wants to reduce our complicated universe down to its simplest building blocks? A bunch of particle physicists, that's who. Why is the Higgs boson critical to that goal?
Advertisement
The International Thermonuclear Experimental Reactor plant aims to demonstrate that nuclear fusion could be a viable source of power in the future.
Thanks to our voracious appetite for energy, the element long linked with nuclear weapons is taking on a new role. Where does the hunt begin for uranium?
In 1999, Hisashi Ouchi, a Japanese nuclear fuel plant worker was exposed to critical levels of radiation. He suffered the worst radiation burns in history. He lived for 83 agonizing days afterward as his body all but disintegrated.
Thorium is in many ways safer than uranium for nuclear power production. But is it safe enough to bet on for our energy future?
Advertisement
The Large Hadron Collider isn't just a one-trick (Higgs) pony. Find out what else has happened where hundreds of millions of particles may collide any given second.
When something as important as the Higgs rocks our world, we want to know every last thing about it, including what it looks like. So?
Of all the superheroes we have in the universe, supersymmetry might be the one that will save us from total annihilation. Not because it fights bad guys, but because it just might explain how the tiniest parts of the cosmos work.
Explosions, fires and dangerous radiation levels dominated the headlines after the March 11 earthquake and tsunami sparked a nuclear crisis in Japan. How did so many safety measures fail?