Nuclear Science

Nuclear science is the study of sub-atomic particles and their application in various disciplines. Here you can learn about nuclear power plants, atomic theory and radiation.

Learn More / Page 2

Nuclear meltdowns can be scary, but it's important to understand what causes them. Learn about how nuclear meltdowns work.

By Robert Lamb & Desiree Bowie

We're all exposed to tiny levels of radiation, but a blast of it can leave you in agony — that is, if it doesn't kill you outright. What is it, what causes it and how can we treat it?

By Ed Grabianowski

I once saw this device shaped like a light bulb. It had a vertical support inside it, and on that support there were four vanes with four diamonds on the end. One side of the diamond was black and the other was white. I did a little research and found out that it was called a Crookes' radiometer -- how does it work?

Advertisement

Many ads for new clocks advertise their ability to automatically synchronize themselves with the atomic clock in Boulder, Colorado. This atomic clock is more precise because it uses the frequencies of atoms as its resonator.

When the power goes out and is later restored, how do you know what time to set your clocks to? Have you ever wondered how time is regulated? Learn how scientists determine exact time.

By Douglas Dwyer

Nuclear radiation can be extremely beneficial or extremely harmful -- it all depends on how it's used. Learn what nuclear radiation is all about.

By Marshall Brain & Desiree Bowie

Fusion reactors will use abundant sources of fuel, will not leak radiation above normal background levels, and will produce less radioactive waste than current fission reactors. Learn about this promising power source.

By Patrick J. Kiger & Craig C. Freudenrich

Advertisement

Atom smashers tell us about the fundamental structure of matter, the forces holding it together and the origins of the universe. Discover how scientists use particle accelerators to break atoms apart to learn about the nature of reality.

By Craig Freudenrich, Ph.D.

First discovered in the late 1930s, muons are passing through you and everything around you at a speed close to light, as cosmic rays strike particles in our planet's atmosphere. So what are muons and how are they informing the new physics?

By Patrick J. Kiger

The lava-like material that formed after the Chernobyl nuclear disaster is a deadly example of corium, a hazardous material created only after core meltdowns. Five minutes next to it can kill a human.

By Patrick J. Kiger

In 1999, Hisashi Ouchi, a Japanese nuclear fuel plant worker was exposed to critical levels of radiation. He suffered the worst radiation burns in history. He lived for 83 agonizing days afterward as his body all but disintegrated.

By Patrick J. Kiger