Nuclear Science

Nuclear science is the study of sub-atomic particles and their application in various disciplines. Here you can learn about nuclear power plants, atomic theory and radiation.

Learn More

In the history of atomic research, few stories are as gripping or cautionary as that of the demon core, a plutonium sphere designed for one of history's most devastating weapons. This tale not only encapsulates the highest point of atomic ambition but also serves as a somber reminder of the human cost associated with such power.

By Clarissa Mitton

In nuclear physics, the concept of half-life plays a crucial role in understanding the decay of radioactive substances. Scientists use the half-life formula in other disciplines to predict the rate of decay, as well as measure the age of ancient artifacts through carbon dating.

By Yara Simón

The Standard Model of physics provides a framework for the subatomic world of all energies. Could a possible newfound carrier boson expand the definition of that framework?

By Mark Mancini

Advertisement

Tour the inside of a nuclear power plant with these illustrative diagrams to learn more about how nuclear power plants work.

By Allison Loudermilk

The nuclear arms race was a frantic era in which several nations tested nuclear technology and stockpiled warheads. Read about the nuclear arms race.

By John Fuller

Dropping atomic bombs on Hiroshima and Nagasaki ended World War II. How did the most powerful weapon in the world get developed? It started with the Manhattan Project.

By John Fuller

In 1999, Hisashi Ouchi, a Japanese nuclear fuel plant worker was exposed to critical levels of radiation. He suffered the worst radiation burns in history. He lived for 83 agonizing days afterward as his body all but disintegrated.

By Patrick J. Kiger

Advertisement

First discovered in the late 1930s, muons are passing through you and everything around you at a speed close to light, as cosmic rays strike particles in our planet's atmosphere. So what are muons and how are they informing the new physics?

By Patrick J. Kiger

The lava-like material that formed after the Chernobyl nuclear disaster is a deadly example of corium, a hazardous material created only after core meltdowns. Five minutes next to it can kill a human.

By Patrick J. Kiger

Thorium is in many ways safer than uranium for nuclear power production. But is it safe enough to bet on for our energy future?

By Jesslyn Shields

When the power goes out and is later restored, how do you know what time to set your clocks to? Have you ever wondered how time is regulated? Learn how scientists determine exact time.

By Douglas Dwyer

Advertisement

Nuclear radiation can be extremely beneficial or extremely harmful -- it all depends on how it's used. Learn what nuclear radiation is all about.

By Marshall Brain & Desiree Bowie

Fusion reactors will use abundant sources of fuel, will not leak radiation above normal background levels, and will produce less radioactive waste than current fission reactors. Learn about this promising power source.

By Patrick J. Kiger & Craig C. Freudenrich

The Large Hadron Collider isn't just a one-trick (Higgs) pony. Find out what else has happened where hundreds of millions of particles may collide any given second.

By Nicholas Gerbis

When something as important as the Higgs rocks our world, we want to know every last thing about it, including what it looks like. So?

By Kate Kershner

Advertisement

Of all the superheroes we have in the universe, supersymmetry might be the one that will save us from total annihilation. Not because it fights bad guys, but because it just might explain how the tiniest parts of the cosmos work.

By Kate Kershner

Nuclear waste epitomizes the double-edged sword of modern technology. It's a toxic and radioactive byproduct of nuclear medicine, nuclear weapons manufacturing and nuclear power plants.

By Nathan Chandler

Explosions, fires and dangerous radiation levels dominated the headlines after the March 11 earthquake and tsunami sparked a nuclear crisis in Japan. How did so many safety measures fail?

By Marshall Brain

Over the years, nuclear reactors have been viewed as both a miracle and a menace. How does a nuclear reactor do its job? And what happens when something goes wrong?

By Patrick J. Kiger

Advertisement

It's lunchtime, and you've spastically spilled soda all over your desk. Chances are you could tackle that mess faster than we could say "Mr. Clean." What do you do though when the spill is radioactive?

By Jonathan Atteberry

Nuclear meltdowns can be scary, but it's important to understand what causes them. Learn about how nuclear meltdowns work.

By Robert Lamb & Desiree Bowie

We're all exposed to tiny levels of radiation, but a blast of it can leave you in agony - that is, if it doesn't kill you outright. What is it, what causes it and how can we treat it?

By Ed Grabianowski

Iran has announced its activation of a second set of uranium centrifuges. These machines are at the core of the uranium-enrichment process. Find out where the centrifuge fits into the equation.

By Marshall Brain

Advertisement

Nuclear materials get used in many forms of nuclear medicine -- everything from PET scans to chemotherapy uses them. Learn how nuclear medicine works.

By Craig Freudenrich, Ph.D.

On the one hand, nuclear power offers a clean energy alternative that decreases fossil fuel dependence. On the other, it summons images of quake-ruptured Japanese power plants leaking radioactive water. What happens in reactors in good times and bad?

By Marshall Brain, Robert Lamb & Patrick J. Kiger